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Abstract 

Computational grids consisting of large and diverse sets 
of distributed resources have recently been adopted by 
organizations such as NASA and the NSF. One key 
component of a computational grid is an information 
services that provides information about resources, 
services, and applications to users and their tools. This 
information is required to use a computational grid and 
therefore should be available in a timely and reliable 
manner. In this work, we describe the Globus information 
service, describe how this service is used, analyze its 
current performance, and perform trace-driven 
simulations to evaluate alternative implementations of 
this grid information service. We find that the majority of 
the transactions with the information service are changes 
to the data maintained by the service. We also find that of 
the three servers we evaluate, one of the commercial 
products provides the best performance for our workload 
and that the response time of the information service was 
not improved during the single experiment we performed 
with data distributed across two servers. 

1. Introduction 

Computational grids [3] consisting of large and diverse 
sets of distributed resources have recently been adopted 
by organizations such as NASA in their Information 
Power Grid (IPG) [7,9] and NSF in their Partnership for 
Advanced Computing Infrastructure (PACI) effort 
[11,12]. The key middleware supporting computational 
grids is the Globus toolkit [4]. The Globus toolkit 
provides services such as security, communication, 
managing distributed applications, remote data transfer, 
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and information. The increase in the number of resources 
and users in Globus-based computational grids has 
highlighted deficiencies in the current implementation of 
some of these services. In particular, the implementation 
of the Globus Grid Information Service (GIS) was 
insufficient to handle the loads being placed on it until the 
recent addition of a second server. The result of the high 
load on the GIS was that queries made by users were not 
being fulfilled in a timely manner and therefore, users 
could not effectively locate and determine how to access 
the resources available in the Globus-based computational 
grids. 

The goal of this study is to examine the demands made 
on the Globus GIS and evaluate how well different GIS 
implementations can meet those demands. We begin in 
Section 2 by describing the current Globus GIS and how 
it is used by Globus software and users. In Section 3, we 
use trace data obtained from the Globus GIS to study the 
load that is placed on the GIS and characterize who is 
accessing the GIS for what reasons. We find that the  
majority of the accesses made to the GIS are for the 
purposes of modifying the information stored in the GIS. 
This is contrary to the assumption made by most of the 
commercial software used to implement grid information 
services which assume that the vast majority of the 
operations will be searches. This access pattern is also 
similar to the access patterns expected for Directory 
Enabled Networking [8] and our results should therefore 
apply to that domain. We also find that fairly high 
demands are placed on the GIS: there are typically 90 
connections open to the GIS and 8.8 operations per 
second occur on average. 

Section 4 describes how we use trace-driven 
simulation to evaluate GIS configurations and presents 
the results of these simulations. We find that of the three 
servers we evaluate, the server provided by Vendor 1 
exhibits the best performance on the hardware we used 
for evaluation. We also find that the communication 
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latency between the clients and the servers has a 
significant impact on performance and that distributing 
the GIS data across two servers increases the average 
update time by 27 percent and decreases the average 
search time by 76 percent. Section 4 describes our 
methodology for evaluating GIS implementations, 
presents the results we have obtained, and analyzes these 
results. Section 5 describes the changes to Globus in 
version 1.1.3 that will affect the Globus GIS and 
discusses the effects we believe they will have on GIS 
performance and reliability. Section 6 presents our 
conclusions and future work. 

2. Metacomputing Directory Service 

The Metacomputing Directory Service (MDS) [2] is 
the grid information service of the Globus project. The 
MDS is a repository of information for using 
computational grids. It contains information about 
organizations, people, computers, networks, software, 
applications, and project-specific data. The MDS is 
accessed using the Lightweight Directory Access Protocol 
(LDAP) [5,6] and data in the MDS is organized as entries 
in a hierarchical tree called the directory information tree. 
The location of an entry in the directory information tree 
is based on organizations and other entries it is associated 
with. For example, a Portable Batch System scheduler 
interface for a SGI Origin computer system at NASA 
Ames would be located in the directory information tree 
(moving towards the root of the tree) at: 
service=jobmanager-pbs, hn=origin.arc.nasa.gov, 
ou=Ames Research Center, o=National Aeronautical and 
Space Administration, o=Globus, c=US. Each entry in the 
tree is a set of attributes where an attribute has a name and 
one or more values. The names are text strings and the 
values can be of any number of pre-defined types, but are 
typically strings. For example, the entry for the above 
PBS scheduler interface might contain the name of the 
host it is running on, the port it is listening on, the type of 
scheduler available, how many nodes are managed and 
available through the interface, properties of the 
scheduler, and so forth. Details of the MDS directory 
information tree and the types of entries that are defined 
are available in [2]. 

The LDAP protocol supports addition, deletion, and 
modification of entries in the directory information tree 
and allows clients to search an LDAP server for entries 
that satisfy specified search constraints. The LDAP 
communications between the client and the server can be 
unauthenticated, authenticated with an identity and 
password, or authenticated with an identity and password 
over a Secure Sockets Layer (SSL) connection. Currently, 
the MDS is not using SSL connections. LDAP databases 
and clients are provided by many vendors. In this work, 
we are concerned with implementations provided by 

OpenLDAP and two companies, Vendor 1 and Vendor 2, 
that we cannot identify for licensing reasons. Currently, 
the Globus software uses the OpenLDAP client software 
to access the MDS, which is contained in two Netscape 
LDAP servers located at the National Center for 
Supercomputing Applications (NCSA) in Champaign-
Urbana, Illinois. 

As the number of entities participating in the Globus 
computational grid increased, the response time of a 
single server became inadequate. Fortunately, LDAP 
servers support several techniques to improve response 
times. First, data can be distributed across several 
computer systems. This is accomplished by placing sub-
trees of the directory information tree on different hosts 
and accessing these sub-trees through LDAP referrals. 
For example, all data from NASA Ames can reside in a 
database on a LDAP server running on a machine at 
NASA Ames. This approach may increase the amount of 
adds, deletes, and modifies that can occur in a given time 
interval but may increase the response time of searches if 
the searches have to contact multiple servers to get their 
results. 

Second, Data can be replicated on multiple hosts. This 
approach may increase the number of searches that can be 
serviced in a given time by servicing the searches on 
different hosts, but it may decrease the number of adds, 
deletes, and modifies that can occur in a given time since 
any changes made must be propagated to the replications. 
Third, the LDAP servers can be tuned to improve their 
response time. This tuning varies from implementation to 
implementation, but one example is the creation of 
indexes that allow for faster searches. As mentioned 
above, the Globus MDS data has recently been distributed 
across two servers at NCSA and this has significantly 
improved the access times to the data contained in the 
MDS. 

There are several different Globus software modules 
that update information in the MDS. First, when a 
computer system is initially added to the Globus grid, a 
setup script populates the MDS with information about 
the host, it’s network interfaces, the networks it is 
attached to, and the Globus software running on the host. 
Second, there are a set of scripts that are run periodically 
to update information about the computers, networks, and 
software available through the grid. Third, there are MDS 
updates associated with the Globus Resource Allocation 
Manager (GRAM) [1]. The GRAM is used to start 
applications on remote computer systems and there are 
two GRAM components on remote computer systems that 
interest us here. The GRAM job manager is a daemon that 
is started for each application. The job manager starts, 
monitors, and manages an application and informs a 
second software module, the GRAM reporter, of the 
application state. Periodically, the GRAM reporter will 
determine the number of available nodes on the computer 
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system it is associated with, determine the status of any 
queues associated with the GRAM, determine the users 
that can use the GRAM, gather the state of the 
applications submitted through the GRAM, and update all 
of this information in the MDS. By default, this process is 
performed every 30 seconds and user and job information 
is not published into the MDS. Many sites do not publish 
the user information for security reasons, and do not 
publish job information due to the load it places on the 
MDS. 

There are many possible ways that users can use the 
MDS data. One common way is that when a user uses the 
globusrun program to start an application on a host, the 
user can specify the hostname, and globusrun will contact 
the MDS to find the host name, port number, and other 
information necessary for GRAM to start an application 
on the remote computer. Another common use of the 
MDS is to query the status of applications that are started 
on remote systems. Users have not typically employed the 
MDS in more sophisticated ways because the response 
time of the MDS was not sufficient to support these 
activities. 

A new release of Globus, version 1.1.3, should occur 
in June or July of 2000 and there are changes that affect 
the MDS in this release. The most significant change is 
that the MDS will be a highly distributed information 
service with an OpenLDAP server running on every host 
that provides compute cycles to remote users through 
Globus. These LDAP servers will maintain local data and 
can also be configured to push data to organizational 
LDAP servers that maintain data from a group of hosts 
that are running the Globus software. A further 

description of this approach is provided in Section 5 along 
with our thoughts on this approach. 

3. Workload Characterization 

In this section, we analyze 20 hours of trace data 
recorded from the Globus MDS server. This data consists 
of all of the accesses to the LDAP server from when the 
server restarted on February 24, 2000 to when it restarted 
again on February 25. These 20 hours of data contain 
86,695 connections to the server and 143,446 adds, 
deletes, modifies, and searches. If we also consider 
connects, binds to an identity, responses to requests, 
unbinds from an identity, and closes then there are 
633,672 operations in the workload or an average of 8.8 
operations per second. 

Figure 1 graphs the number of open connections at any 
given time. The data shows that there are typically 90 
connections open at any time with two spikes of over 900 
active connections. Figure 2 presents a histogram of 
connection duration. This data shows that there are a large 
number of relatively short-duration connections. In fact, 
88 percent of the connections last less than 120 seconds 
and 97 percent of the connections last less than 240 
seconds. Examining the data closer, we determine that the 
long-duration connections are those where a user connects 
to the information service and periodically searches for 
the state of their application using that connection. Figure 
3 shows a histogram of the number of adds, deletes, 
modifies, or searches per connection. The data shows that 
the vast majority of the connections have relatively few 
operations. In fact, 97 percent of the connections have 
two or less of these operations. Examination of this data 
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Figure 1. The number of open connections to the MDS server over time. 
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shows that the connections with the most number of 
operations are those where a user is periodically searching 
for the state of their application. There are also a fairly 
high number of operations per connection when a gram 
reporter updates information when publishing of job 
information is enabled. 

Each connection consists of a connect, a bind to an 
identity, one or more adds, deletes, modifies, or searches, 
an unbind, and a close. Table 1 shows the number of add, 
delete, modify, and search operations in the trace data. As 
one can see, the majority of the operations are modifies. 
These modifications come from GRAM reporters to 
update information such as job status, the load on 
workstations, the nodes available through schedulers, and 
so forth. Modifications are also used to touch objects so 
that clients will know that Globus daemons were up in the 
recent past. There are relatively few entries added and 
deleted because only entries for jobs are added and 
deleted and very few computer systems are publishing 
this information due to the load it places on the MDS. 
Entries can also be added to the MDS when new 
organizations start using the MDS, but these events are 
relatively rare and did not occur in the trace data analyzed 
here. There are relatively few searches because at the time 
this data was recorded, users were avoiding searches of 
the MDS because these searches were not returning 
results for long periods of time. Table 1 also presents the 
number of errors that occur during the operations. The 
data shows that a high percentage of the add and search 
applications result in errors. Most of the errors that occur 
during add operations occur when Globus software first 
tries to modify an entry in the MDS, the modify fails, an 
add is attempted, and it also fails. The modify typically 
fails because the bind to an identity failed. These 
successions of failures can be avoided by responding 
correctly to the LDAP error codes that are generated: an 
add should only be attempted after a failed modify if the 
modify failed because the entry does not exist. The search 
operations also result in a high percentage of errors. 

Almost all of these errors are caused by the searches 
timing out before they complete because the server was 
too highly loaded. 

We also use this trace data to classify the connections 
and identify what type of entity initiated the connection 
and for what purpose. These classifications are shown in 
Table 2. As one can see, we can classify almost 100 
percent of the connections and the majority of the 
connections, 67 percent, are modifications of data made 
by GRAM reporters. 

4. Experimental Analysis 

We use a set of experiments to evaluate the 
performance of LDAP server implementations, 
implementation-specific LDAP configurations, and 
distribution of an LDAP directory information tree across 
multiple hosts. Our approach in this work is to evaluate 
GIS configurations by starting one or more LDAP servers 
that will act as the GIS on one or more systems, loading 
these servers with the contents of the Globus MDS as of 
February 24, 2000, and then replaying 20 hours of access 
that were made to the Globus MDS server between 
February 24, 2000 and February 25, 2000 from one or 
more workstations. The clients on the workstation that 
exercise the LDAP servers are written in Java and use the 
Java Naming and Directory Information Interface  
(JNDI). The trace data used for these simulations is the 
derived from the data that we analyzed in Section 3.  

The data used in the simulation differs from the 
recorded data in that the recorded data does not include 
the actual modifications made to entries or the actual 
contents of the entries that were added to the LDAP 
servers. We construct this data off-line using the data in 
the MDS and our knowledge of which attributes Globus 
modifies. We perform different experiments and adjust 
the load on the LDAP servers by simulating the trace data 
faster or slower than real time. Our testing environment 
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Figure 2. Histogram of connection durations. 
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Figure 3. Histogram of operations per connection. 
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consists of a Sun UltraSparc 30 with one 296 MHz CPU, 
512 MB of memory and UltraSCSI disk drives running 
Solaris 2.6 where we run most of our experiments and a 
Sun UltraSparc 10 with a 333 MHz CPU, 128 MB of 
memory and a UltraSCSI disk drive that we use for 
experiments when two servers are used to provide an 
information service. We use several client systems in 
different geographical locations to test OpenLDAP server 
version 1.2.10 and the latest LDAP products from Vendor 
1 and Vendor 2 running on one or both of these systems. 
We evaluate a MDS configuration using the response 
time of the LDAP commands and if the LDAP servers 
continue to operate. 

There are many possible GIS designs and we only aim 
to evaluate a few in this work. First, we evaluate the 
relative performance of the OpenLDAP, Vendor 1, and 
Vendor 2 LDAP servers. Second, we evaluate the 

performance effects of using indexes to improve search 
performance. Third, we evaluate the performance of a 
GIS that distributes data over two LDAP servers using 
referrals. Fourth, we discuss the advantages and 
disadvantages of data replication in our environment. 

 

4.1. Comparison of LDAP Servers 

To compare the performance of the LDAP servers 
from OpenLDAP, Vendor 1, and Vendor 2, we start one 
of these servers on our test system, load the LDAP server 
with the MDS contents from February 24 as described 
above, and then use a simulator running on a workstation 
to exercise the LDAP server under test. The simulator 
replays the trace data recorded from the MDS server in 
real time or at a faster or slower rate. The simulator can 

Table 1. Occurrences of LDAP operations. 

Operation Number 
of 

Operations 

Percent of 
Total 

Operations 

Number of 
LDAP Errors 

Percent of 
Operations Resulting 

in Error 
Add 1044 0.73 943 90.33 

Delete 81 0.06 6 7.41 
Modify 134611 93.84 3807 2.83 
Search 7710 5.37 5867 76.10 
Total 143446 100.00 10623 7.41 

 

Table 2. Classification of MDS connections. 

Number 
of 

connections 

Percent 
of 

Connections 

Description 

58476 67.45 Modification to job manager, the queues it can submit to, and the jobs it has 
submitted. 

364 0.42 Modification of host information. This includes entries for the host, it’s views from 
various networks, the Globus software running on the host. 

73 0.08 Modification of network information. 
7 0.01 Modification of software information. 

71 0.08 Deletion of jobs. 
191 0.22 Search for job status 
50 0.06 Search for job managers. 

1494 1.72 Search by the MDS monitor. 
1234 1.42 Search for all GlobusPhysicalResource objects. We do not currently know what entity 

is generating these searches. 
22 0.03 Search for all objects. These are most likely users performing tests. 
0 0.00 Unclassified adds. 
5 0.01 Unclassified deletes. Deletions are so infrequent that we do not classify them. 

4440 5.12 Connections with a bind and unbind but no operations. We do not currently have an 
explanation for these connections. 

20232 23.34 Connections containing a connect, a bind failure, an unbind, and a close. 
86659 99.96 Classified connections. 
86695 100.00 Total number of connections 
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also be programmed with constraints such as the 
maximum number of open connections at a time and the 
maximum number of new connections that can be opened 
a second. Table 3 summarizes the results of these 
experiments. The load column indicates the load that was 
placed on the server under test. For the Vendor 1 and 
Vendor 2 results, the load is the factor by which the 
simulator sped up time during the simulations. For the 
OpenLDAP server we indicate a load of about 0.5 but this 
does not directly relate to the amount of time it took to 
complete the simulation. We found that the OpenLDAP 
server failed when we attempted to perform simulations at 
a load of 1.0 or 0.5. The server failed by not responding to 
queries in the middle of the simulations. To complete a 
simulation, we limited the maximum number of open 
connections to 50 and the maximum number of new 
connections a second to 20, roughly half the average of 90 
open connections that occur during a real-time simulation. 
These are the results reported for OpenLDAP in Table 3 
and leads to our first result: the OpenLDAP server is the 
only server of the three we tested to fail under the loads 
we placed on it. 

The data for the servers from Vendor 1 and Vendor 2 
for a load of 1 indicate that the server from Vendor 1 
performs adds, deletes, and modifies in 0.13 seconds on 
average, 9 times faster than the 1.2 seconds of the server 
from Vendor 2. The server from Vendor 2 performs 
searches in 1.4 seconds on average, which is 1.8 times 
faster than the 2.5 seconds of the Vendor 1 server. This 
data seems to indicate that the Vendor 2 server has been 
highly optimized for search performance. We note that 
the server from Vendor 2 has more indexes to improve 
search performance than the server from Vendor 1 
(indexes and their performance effects are discussed 
further in Section 4.2) and changes to the data require that 
these indexes be updated. Optimizing search performance 
is an excellent characteristic for the typical data in LDAP 
servers that is not modified very often, but trading 
improved search performance for decreased modification 
performance is not the best choice in our environment. 
This observation is further emphasized when the response 
times for the simulations that execute in half of the time 
they were recorded (load of 2) is examined. The data 
shows that the response time from the server from Vendor 

2 is 34.6 times slower than the server from Vendor 1. We 
observe that during the experiment with the server from 
Vendor 2, the CPU load on the host running the server 
had a load of about 5.5 (as measured by the Unix uptime 
command) while we observed a CPU load of at most 0.1 
during the experiment with the server from Vendor 1. 
This data may indicate that the Vendor 1 server is I/O 
bound while the Vendor 2 server is CPU bound. Future 
experiment to further examine these observations would 
be to examine the performance of these servers on a 
multiprocessor system and/or a system with an array of 
disks. 

4.2. Indexing 

One technique that is used to improve the performance 
of searches is indexing. An index essentially stores search 
results for quick lookups when a search occurs. For 
example, an index can be maintained for an operating 
system attribute so that a search for all Solaris computer 
systems is quickly responded to by accessing the index. 
The index would be an equality index on the operating 
system attribute that would contain a list of entries 
associated with the value Solaris. These entries would be 
all of the entries in the directory that have a value of 
Solaris for the operating system attribute. 

The disadvantage to indexes is that they have to be 
updated whenever an attribute they are indexing is 
changed. This adds overhead to the add, modify, and 
delete operations to maintain any indexes that refer to any 
of the attributes in the entries that are changed. We 
evaluate the performance of indexes by adding an index 
to the server from Vendor 1 to improve the performance 
of the 191 searches made to determine the status of jobs 
and then performing a real-time simulation. These 
searches are performed over the whole directory tree to 
look for entries with GlobalJobIDs that contain the name 
of the system that the job is executing on. To improve the 
performance of these searches, we add an approximate 
index on the GlobalJobID attribute. 

We find that the search performance improves 79 
percent from 2463 ms to 515 ms while the performance of 
the add, delete, and modify operations decreases 38 
percent from 159 ms to 220 ms. We therefore see that 

Table 3. Performance of operations on individual LDAP servers under varying loads. 

Load LDAP Server Add 
(ms) 

Delete 
(ms) 

Modify 
(ms) 

Search 
(ms) 

Weighted Average 
(ms) 

~0.5 OpenLDAP 101 108 317 1657 387 
Vendor 1 121 106 159 2463 283 1.0 
Vendor 2 933 1230 903 1358 928 

1.33 Vendor 1 194 141 233 2874 375 
Vendor 1 270 351 581 4031 764 2.0 
Vendor 2 31722 36920 26558 22945 26407 
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there is a significant improvement in search performance 
when an index is used, but there is a decrease in 
performance for changes to entries. In our environment, 
this decrease in performance for the large number of 
modifications outweighs the increase in performance of 
the search operations. 

4.3. Data Distribution 

Distribution of data can be used to support very large 
databases and to improve the performance of databases. 
Distributing data across multiple servers results in more 
resources being available to handle data modifications 
and hopefully better performance. Data distribution can 
also improve search performance when the searches 
access data from only a few servers. In this situation, 
more resources are available to satisfy searches. If 
searches access data from many servers, many 
transactions have to occur to obtain the search results and 
this reduces search performance. 

We are interested in distributing data across multiple 
servers because of the large percentage of operations in 
our environment that change the data. Globus users 
observed a dramatic performance improvement when the 
Globus GIS recently moved from a single server to two 
servers. We wish to perform simulations to characterize 
the effects of distributing data across more than one 
server. We distribute our data across two servers from 
Vendor 1 in the same way that the Globus GIS currently 
distributes it’s data: one server contains all of the data 
from NASA and the NSF Alliance sites, the second server 
contains all of the other data. 

We performed a simulation in half of the time the data 
was recorded in. We assume that the components 
updating data in the information service will know which 
of the servers contains the data they are updating so that 
only one server will be contacted for each update. We 
find that distributing our data across two servers results in 
an increased update time of 27 percent. This surprising 
result may be due to a load imbalance on the two servers 
or due to the differing performance of the two computer 
systems the LDAP servers ran on. We are continuing to 
investigate this result. We also find that the average 
search time is 970 ms which is 76 percent faster than the 
4031 ms search time when a single LDAP server is used. 

Another way to use multiple computer systems to store 
our data is to replicate data on one or more servers. 
Replication improves search performance by having more 
resources available to perform searches and improves 
reliability by having data still be available when a server 
goes down. The disadvantage to replication is that when 
data is changed, these changes must be propagated to the 
replicas of the data and this adds overhead. At this time, 
we do not evaluate replication because of the relatively 

few number of searches in our workload and the relatively 
large number of modifications. 

5. Globus 1.1.3 Grid Information Service 

The Globus group has made several changes in Globus 
version 1.1.3 to attempt to improve the performance of 
their information service. The major change is that the 
default information service is highly distributed to lower 
the number of changes made to the data on any single 
server and eliminate the bottleneck caused by having 
many data updates go to only a few servers. By default, 
each host that supports application execution via Globus 
has a Grid Resource Information Server (GRIS) on it. The 
GRIS consists of the OpenLDAP front end layered over 
the GRAM reporter (described in Section 2) that provides 
information about the host the GRIS is running on 
including the host itself, the software on the host, the 
users who can access to the host, and the applications 
running. 

The other new component of the Globus 1.1.3 GIS is 
organizational LDAP servers. An organizational sever is a 
LDAP server (Globus will configure an OpenLDAP 
organizational server if it is asked to) that contains 
referrals to the GRIS servers it is associated with. For 
example, an organizational server would contain an entry 
for each of the GRIS servers in that organization and each 
of these entries would refer to a GRIS server on a 
machine in the organization. This configuration results in 
a “pull”  model for retrieving data: when a user performs a 
search, an organizational server queries the GRIS servers 
that may contain the data the user is interested in and then 
passes this data to the user. This is very different from the 
“push”  model used by earlier Globus releases where the 
GRAM reporter pushed data to remote LDAP servers. 

We have not evaluated these changes to the Globus 
information service using experiments but we do have 
some initial thoughts. First, having a large number of 
LDAP servers will mean fewer accesses to each server 
and therefore faster response times. The difficulty is that 
the data of interest to users is now widely distributed. If a 
user is interested in information from a small set of hosts, 
we do not believe it will add a large overhead to perform 
a small number of queries to different servers to find the 
information. If a user is interested in information that 
comes from a large number of hosts, we believe it will 
take an unacceptably long time to query all of the hosts 
that have the information. This is where organizational 
servers that aggregate grid information can improve 
search performance. Searches that examine data from a 
large number of hosts can query a smaller number of 
organizational servers to find their results in an acceptable 
period of time if the organizational servers cache the data 
they pull from GRIS servers. The next problem is that if 
users perform searches for dynamic information from 
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many hosts, this data cached in the organizational servers 
will not be up to date and must be pulled from the GRIS 
servers. This means that a search for dynamic information 
sent to an organizational server can require many pulls of 
data from GRIS servers and the potential benefits of 
having a LDAP server on each Globus host have been 
negated. If this situation occurs in practice, it implies that 
there is no reason to have an LDAP server on each 
Globus host. 

To summarize our analysis, the effectiveness of the 
changes to the Globus information service in version 
1.1.3 will depend on how users want to access data from 
this service. If users do not perform many searches for 
dynamic data that are produced by a significant number of 
hosts, then this approach should provide good 
performance. If users do wish to search for dynamic data 
produced by a significant number of hosts, the 
OpenLDAP servers on the Globus hosts will not improve 
performance and a set of organization servers that 
maintain up-to-date information should be used. 

6. Conclusions 

In this paper, we described our investigation of 
alternative designs for a grid information service. We 
described the Globus grid information service and how 
the Globus toolkit and users access this information 
service. We analyzed trace data obtained from the Globus 
information service and found that the majority of the 
operations are modifications of existing data, that the 
information service has roughly 90 connections open at 
any given time, and the information service is performing 
8.8 operations per second. We described our methodology 
for experimentally evaluating LDAP server designs using 
trace data and contents obtained from the Globus grid 
information service and we evaluated the OpenLDAP 
server and two servers from vendors we cannot specify. 
We found that the OpenLDAP server failed when we 
attempted to place our recorded load upon it and that the 
server from Vendor 1 has 9 times lower response times 
than the server from Vendor 2 when modifying data in the 
directory service but the server from Vendor 2 has 1.8 
times better search performance. If we double the load on 
these servers, the server from Vendor 1 has 35 times 
lower response times than the server from Vendor 2. We 
also observe that the Vendor 2 implementation seems to 
be highly optimized for searching and for executing on 
multiprocessor computer systems. We find that indexing 
can be used to reduce the response time of searches but 
adding index also results in slower response times when 
changes are made to the data because the indexes have to 
be kept up to date. Finally, we distributed our directory 
information tree across two servers on two computer 
systems and performed a simulation with twice the load 
of our trace data. We found that distributing data 

increases the response time of updates by 27 percent but 
decreases the response time for searches by 76 percent. 

In future work, we will continue to evaluate different 
configurations for grid information services and we will 
investigate other factors that impact the performance of a 
grid information service such as an increase in the number 
of users and the use of secure connections the servers. To 
assist in this work, we plan to develop a system of 
synthetic grid entities to apply loads to proposed grid 
information service. The current Globus components use 
the grid information service in a relatively predictable 
way. This makes it relatively easy to develop synthetic 
components and have these components apply loads to 
the grid information service. Further, as described in our 
workload analysis, users also use the MDS in predictable 
ways. This allows us to develop synthetic users and 
evaluate the performance and fault tolerance of the design 
of a grid information system if there are hundreds or 
thousands of users. We expect the number of users of 
computational grids to greatly increase as the middleware 
grows in stability and more users observe the advantages 
of using computational grids. 
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